并发编程(五)-抽象队列同步器AQS应用之Lock详解

2020/07/05 并发 共 32396 字,约 93 分钟
似水似流年

AQS应用之Lock

并发之父 Doug Lea(小名:李二狗) 生平不识Doug Lea,学懂并发也枉然

Java并发编程核心在于java.util.concurrent包而juc当中的大多数同步器实现都是围绕着共同的基础行为,比如等待队列、条件队列、独占获取、共享获取等,而这个行为的抽象就是基于AbstractQueuedSynchronizer简称AQS,AQS定义了一套多线程访问共享资源的同步器框架,是一个依赖状态(state)的同步器。

ReentrantLock

ReentrantLock是一种基于AQS框架的应用实现,是JDK中的一种线程并发访问的同步手段,它的功能类似于synchronized是一种互斥锁,可以保证线程安全。而且它具有比synchronized更多的特性,比如它支持手动加锁与解锁,支持加锁的公平性。 使用ReentrantLock进行同步 ReentrantLock lock = new ReentrantLock(false);//false为非公平锁,true为公平锁 lock.lock() //加锁 lock.unlock() //解锁

ReentrantLock如何实现synchronized不具备的公平与非公平性呢? 在ReentrantLock内部定义了一个Sync的内部类,该类继承AbstractQueuedSynchronized,对该抽象类的部分方法做了实现;并且还定义了两个子类: 1、FairSync 公平锁的实现 2、NonfairSync 非公平锁的实现 这两个类都继承自Sync,也就是间接继承了AbstractQueuedSynchronized,所以这一个ReentrantLock同时具备公平与非公平特性。 上面主要涉及的设计模式:模板模式-子类根据需要做具体业务实现

AQS具备特性

  • 阻塞等待队列
  • 共享/独占
  • 公平/非公平
  • 可重入
  • 允许中断
  • 除了Lock外,Java.util.concurrent当中同步器的实现如Latch,Barrier,BlockingQueue等,都是基于AQS框架实现
  • 一般通过定义内部类Sync继承AQS 将同步器所有调用都映射到Sync对应的方法
  • AQS内部维护属性volatile int state (32位)
    • state表示资源的可用状态
  • State三种访问方式
    • getState()、setState()、compareAndSetState()
  • AQS定义两种资源共享方式
    • Exclusive-独占,只有一个线程能执行,如ReentrantLock
    • Share-共享,多个线程可以同时执行,如Semaphore/CountDownLatch
  • AQS定义两种队列
    • 同步等待队列
    • 条件等待队列
    • 不同的自定义同步器争用共享资源的方式也不同。自定义同步器在实现时只需要实现共享资源state的获取与释放方式即可,至于具体线程等待队列的维护(如获取资源失败入队/唤醒出队等),AQS已经在顶层实现好了。自定义同步器实现时主要实现以下几种方法:
    • isHeldExclusively():该线程是否正在独占资源。只有用到condition才需要去实现它。
    • tryAcquire(int):独占方式。尝试获取资源,成功则返回true,失败则返回false。
    • tryRelease(int):独占方式。尝试释放资源,成功则返回true,失败则返回false。
    • tryAcquireShared(int):共享方式。尝试获取资源。负数表示失败;0表示成功,但没有剩余可用资源;正数表示成功,且有剩余资源。
    • tryReleaseShared(int):共享方式。尝试释放资源,如果释放后允许唤醒后续等待结点返回true,否则返回false。

同步等待队列

AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。

image-20210720213315943

条件等待队列

Condition是一个多线程间协调通信的工具类,使得某个,或者某些线程一起等待某个条件(Condition),只有当该条件具备时,这些等待线程才会被唤醒,从而重新争夺锁

image-20210720213340176

AQS源码分析

public abstract class AbstractQueuedSynchronizer
        extends AbstractOwnableSynchronizer
        implements java.io.Serializable {
    private static final long serialVersionUID = 7373984972572414691L;
/**
 * Creates a new {@code AbstractQueuedSynchronizer} instance
 * with initial synchronization state of zero.
 */
protected AbstractQueuedSynchronizer() { }

/**
 * Wait queue node class.
 *
 * 不管是条件队列,还是CLH等待队列
 * 都是基于Node类
 * 
 * AQS当中的同步等待队列也称CLH队列,CLH队列是Craig、Landin、Hagersten三人
 * 发明的一种基于双向链表数据结构的队列,是FIFO先入先出线程等待队列,Java中的
 * CLH队列是原CLH队列的一个变种,线程由原自旋机制改为阻塞机制。
 */
static final class Node {
    /**
     * 标记节点未共享模式
     * */
    static final Node SHARED = new Node();
    /**
     *  标记节点为独占模式
     */
    static final Node EXCLUSIVE = null;

    /**
     * 在同步队列中等待的线程等待超时或者被中断,需要从同步队列中取消等待
     * */
    static final int CANCELLED =  1;
    /**
     *  后继节点的线程处于等待状态,而当前的节点如果释放了同步状态或者被取消,
     *  将会通知后继节点,使后继节点的线程得以运行。
     */
    static final int SIGNAL    = -1;
    /**
     *  节点在等待队列中,节点的线程等待在Condition上,当其他线程对Condition调用了signal()方法后,
     *  该节点会从等待队列中转移到同步队列中,加入到同步状态的获取中
     */
    static final int CONDITION = -2;
    /**
     * 表示下一次共享式同步状态获取将会被无条件地传播下去
     */
    static final int PROPAGATE = -3;

    /**
     * 标记当前节点的信号量状态 (1,0,-1,-2,-3)5种状态
     * 使用CAS更改状态,volatile保证线程可见性,高并发场景下,
     * 即被一个线程修改后,状态会立马让其他线程可见。
     */
    volatile int waitStatus;

    /**
     * 前驱节点,当前节点加入到同步队列中被设置
     */
    volatile Node prev;

    /**
     * 后继节点
     */
    volatile Node next;

    /**
     * 节点同步状态的线程
     */
    volatile Thread thread;

    /**
     * 等待队列中的后继节点,如果当前节点是共享的,那么这个字段是一个SHARED常量,
     * 也就是说节点类型(独占和共享)和等待队列中的后继节点共用同一个字段。
     */
    Node nextWaiter;

    /**
     * Returns true if node is waiting in shared mode.
     */
    final boolean isShared() {
        return nextWaiter == SHARED;
    }

    /**
     * 返回前驱节点
     */
    final Node predecessor() throws NullPointerException {
        Node p = prev;
        if (p == null)
            throw new NullPointerException();
        else
            return p;
    }
    //空节点,用于标记共享模式
    Node() {    // Used to establish initial head or SHARED marker
    }
    //用于同步队列CLH
    Node(Thread thread, Node mode) {     // Used by addWaiter
        this.nextWaiter = mode;
        this.thread = thread;
    }
    //用于条件队列
    Node(Thread thread, int waitStatus) { // Used by Condition
        this.waitStatus = waitStatus;
        this.thread = thread;
    }
}

/**
 * 指向同步等待队列的头节点
 */
private transient volatile Node head;

/**
 * 指向同步等待队列的尾节点
 */
private transient volatile Node tail;

/**
 * 同步资源状态
 */
private volatile int state;

/**
 * 
 * @return current state value
 */
protected final int getState() {
    return state;
}

protected final void setState(int newState) {
    state = newState;
}

/**
 * Atomically sets synchronization state to the given updated
 * value if the current state value equals the expected value.
 * This operation has memory semantics of a {@code volatile} read
 * and write.
 *
 * @param expect the expected value
 * @param update the new value
 * @return {@code true} if successful. False return indicates that the actual
 *         value was not equal to the expected value.
 */
protected final boolean compareAndSetState(int expect, int update) {
    // See below for intrinsics setup to support this
    return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}

// Queuing utilities

/**
 * The number of nanoseconds for which it is faster to spin
 * rather than to use timed park. A rough estimate suffices
 * to improve responsiveness with very short timeouts.
 */
static final long spinForTimeoutThreshold = 1000L;

/**
 * 节点加入CLH同步队列
 */
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            //队列为空需要初始化,创建空的头节点
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            //set尾部节点
            if (compareAndSetTail(t, node)) {//当前节点置为尾部
                t.next = node; //前驱节点的next指针指向当前节点
                return t;
            }
        }
    }
}

/**
 * Creates and enqueues node for current thread and given mode.
 *
 * @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
 * @return the new node
 */
private Node addWaiter(Node mode) {
    // 1. 将当前线程构建成Node类型
    Node node = new Node(Thread.currentThread(), mode);
    // Try the fast path of enq; backup to full enq on failure
    Node pred = tail;
    // 2. 1当前尾节点是否为null?
    if (pred != null) {
        // 2.2 将当前节点尾插入的方式
        node.prev = pred;
        // 2.3 CAS将节点插入同步队列的尾部
        if (compareAndSetTail(pred, node)) {
            pred.next = node;
            return node;
        }
    }
    enq(node);
    return node;
}

/**
 * Sets head of queue to be node, thus dequeuing. Called only by
 * acquire methods.  Also nulls out unused fields for sake of GC
 * and to suppress unnecessary signals and traversals.
 *
 * @param node the node
 */
private void setHead(Node node) {
    head = node;
    node.thread = null;
    node.prev = null;
}

/**
 *
 */
private void unparkSuccessor(Node node) {
    //获取wait状态
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);// 将等待状态waitStatus设置为初始值0

    /**
     * 若后继结点为空,或状态为CANCEL(已失效),则从后尾部往前遍历找到最前的一个处于正常阻塞状态的结点
     * 进行唤醒
     */
    Node s = node.next; //head.next = Node1 ,thread = T3
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    if (s != null)
        LockSupport.unpark(s.thread);//唤醒线程,T3唤醒
}

/**
 * 把当前结点设置为SIGNAL或者PROPAGATE
 * 唤醒head.next(B节点),B节点唤醒后可以竞争锁,成功后head->B,然后又会唤醒B.next,一直重复直到共享节点都唤醒
 * head节点状态为SIGNAL,重置head.waitStatus->0,唤醒head节点线程,唤醒后线程去竞争共享锁
 * head节点状态为0,将head.waitStatus->Node.PROPAGATE传播状态,表示需要将状态向后继节点传播
 */
private void doReleaseShared() {
    for (;;) {
        Node h = head;
        if (h != null && h != tail) {
            int ws = h.waitStatus;
            if (ws == Node.SIGNAL) {//head是SIGNAL状态
                /* head状态是SIGNAL,重置head节点waitStatus为0,E这里不直接设为Node.PROPAGAT,
                 * 是因为unparkSuccessor(h)中,如果ws < 0会设置为0,所以ws先设置为0,再设置为PROPAGATE
                 * 这里需要控制并发,因为入口有setHeadAndPropagate跟release两个,避免两次unpark
                 */
                if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
                    continue; //设置失败,重新循环
                /* head状态为SIGNAL,且成功设置为0之后,唤醒head.next节点线程
                 * 此时head、head.next的线程都唤醒了,head.next会去竞争锁,成功后head会指向获取锁的节点,
                 * 也就是head发生了变化。看最底下一行代码可知,head发生变化后会重新循环,继续唤醒head的下一个节点
                 */
                unparkSuccessor(h);
                /*
                 * 如果本身头节点的waitStatus是出于重置状态(waitStatus==0)的,将其设置为“传播”状态。
                 * 意味着需要将状态向后一个节点传播
                 */
            }
            else if (ws == 0 &&
                    !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
                continue;                // loop on failed CAS
        }
        if (h == head) //如果head变了,重新循环
            break;
    }
}

/**
 * 把node节点设置成head节点,且Node.waitStatus->Node.PROPAGATE
 */
private void setHeadAndPropagate(Node node, int propagate) {
    Node h = head; //h用来保存旧的head节点
    setHead(node);//head引用指向node节点
    /* 这里意思有两种情况是需要执行唤醒操作
     * 1.propagate > 0 表示调用方指明了后继节点需要被唤醒
     * 2.头节点后面的节点需要被唤醒(waitStatus<0),不论是老的头结点还是新的头结点
     */
    if (propagate > 0 || h == null || h.waitStatus < 0 ||
            (h = head) == null || h.waitStatus < 0) {
        Node s = node.next;
        if (s == null || s.isShared())//node是最后一个节点或者 node的后继节点是共享节点
            /* 如果head节点状态为SIGNAL,唤醒head节点线程,重置head.waitStatus->0
             * head节点状态为0(第一次添加时是0),设置head.waitStatus->Node.PROPAGATE表示状态需要向后继节点传播
             */
            doReleaseShared();
    }
}

// Utilities for various versions of acquire

/**
 * 终结掉正在尝试去获取锁的节点
 * @param node the node
 */
private void cancelAcquire(Node node) {
    // Ignore if node doesn't exist
    if (node == null)
        return;

    node.thread = null;

    // 剔除掉一件被cancel掉的节点
    Node pred = node.prev;
    while (pred.waitStatus > 0)
        node.prev = pred = pred.prev;

    // predNext is the apparent node to unsplice. CASes below will
    // fail if not, in which case, we lost race vs another cancel
    // or signal, so no further action is necessary.
    Node predNext = pred.next;

    // Can use unconditional write instead of CAS here.
    // After this atomic step, other Nodes can skip past us.
    // Before, we are free of interference from other threads.
    node.waitStatus = Node.CANCELLED;

    // If we are the tail, remove ourselves.
    if (node == tail && compareAndSetTail(node, pred)) {
        compareAndSetNext(pred, predNext, null);
    } else {
        // If successor needs signal, try to set pred's next-link
        // so it will get one. Otherwise wake it up to propagate.
        int ws;
        if (pred != head &&
                ((ws = pred.waitStatus) == Node.SIGNAL ||
                        (ws <= 0 && compareAndSetWaitStatus(pred, ws, Node.SIGNAL))) &&
                pred.thread != null) {
            Node next = node.next;
            if (next != null && next.waitStatus <= 0)
                compareAndSetNext(pred, predNext, next);
        } else {
            unparkSuccessor(node);
        }

        node.next = node; // help GC
    }
}

/**
 * 
 */
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    if (ws == Node.SIGNAL)
        /*
         * 若前驱结点的状态是SIGNAL,意味着当前结点可以被安全地park
         */
        return true;
    if (ws > 0) {
        /*
         * 前驱节点状态如果被取消状态,将被移除出队列
         */
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        /*
         * 当前驱节点waitStatus为 0 or PROPAGATE状态时
         * 将其设置为SIGNAL状态,然后当前结点才可以可以被安全地park
         */
        compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
    }
    return false;
}

/**
 * 中断当前线程
 */
static void selfInterrupt() {
    Thread.currentThread().interrupt();
}

/**
 * 阻塞当前节点,返回当前Thread的中断状态
 * LockSupport.park 底层实现逻辑调用系统内核功能 pthread_mutex_lock 阻塞线程
 */
private final boolean parkAndCheckInterrupt() {
    LockSupport.park(this);//阻塞
    return Thread.interrupted();
}

/**
 * 已经在队列当中的Thread节点,准备阻塞等待获取锁
 */
final boolean acquireQueued(final Node node, int arg) {
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {//死循环
            final Node p = node.predecessor();//找到当前结点的前驱结点
            if (p == head && tryAcquire(arg)) {//如果前驱结点是头结点,才tryAcquire,其他结点是没有机会tryAcquire的。
                setHead(node);//获取同步状态成功,将当前结点设置为头结点。
                p.next = null; // help GC
                failed = false;
                return interrupted;
            }
            /**
             * 如果前驱节点不是Head,通过shouldParkAfterFailedAcquire判断是否应该阻塞
             * 前驱节点信号量为-1,当前线程可以安全被parkAndCheckInterrupt用来阻塞线程
             */
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

/**
 * 与acquireQueued逻辑相似,唯一区别节点还不在队列当中需要先进行入队操作
 */
private void doAcquireInterruptibly(int arg)
        throws InterruptedException {
    final Node node = addWaiter(Node.EXCLUSIVE);//以独占模式放入队列尾部
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return;
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

/**
 * 独占模式定时获取
 */
private boolean doAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
    if (nanosTimeout <= 0L)
        return false;
    final long deadline = System.nanoTime() + nanosTimeout;
    final Node node = addWaiter(Node.EXCLUSIVE);//加入队列
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                failed = false;
                return true;
            }
            nanosTimeout = deadline - System.nanoTime();
            if (nanosTimeout <= 0L)
                return false;//超时直接返回获取失败
            if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                //阻塞指定时长,超时则线程自动被唤醒
                LockSupport.parkNanos(this, nanosTimeout);
            if (Thread.interrupted())//当前线程中断状态
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

/**
 * 尝试获取共享锁
 */
private void doAcquireShared(int arg) {
    final Node node = addWaiter(Node.SHARED);//入队
    boolean failed = true;
    try {
        boolean interrupted = false;
        for (;;) {
            final Node p = node.predecessor();//前驱节点
            if (p == head) {
                int r = tryAcquireShared(arg); //非公平锁实现,再尝试获取锁
                //state==0时tryAcquireShared会返回>=0(CountDownLatch中返回的是1)。
                // state为0说明共享次数已经到了,可以获取锁了
                if (r >= 0) {//r>0表示state==0,前继节点已经释放锁,锁的状态为可被获取
                    //这一步设置node为head节点设置node.waitStatus->Node.PROPAGATE,然后唤醒node.thread
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    if (interrupted)
                        selfInterrupt();
                    failed = false;
                    return;
                }
            }
            //前继节点非head节点,将前继节点状态设置为SIGNAL,通过park挂起node节点的线程
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                interrupted = true;
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

/**
 * Acquires in shared interruptible mode.
 * @param arg the acquire argument
 */
private void doAcquireSharedInterruptibly(int arg)
        throws InterruptedException {
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return;
                }
            }
            if (shouldParkAfterFailedAcquire(p, node) &&
                    parkAndCheckInterrupt())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

/**
 * Acquires in shared timed mode.
 *
 * @param arg the acquire argument
 * @param nanosTimeout max wait time
 * @return {@code true} if acquired
 */
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
        throws InterruptedException {
    if (nanosTimeout <= 0L)
        return false;
    final long deadline = System.nanoTime() + nanosTimeout;
    final Node node = addWaiter(Node.SHARED);
    boolean failed = true;
    try {
        for (;;) {
            final Node p = node.predecessor();
            if (p == head) {
                int r = tryAcquireShared(arg);
                if (r >= 0) {
                    setHeadAndPropagate(node, r);
                    p.next = null; // help GC
                    failed = false;
                    return true;
                }
            }
            nanosTimeout = deadline - System.nanoTime();
            if (nanosTimeout <= 0L)
                return false;
            if (shouldParkAfterFailedAcquire(p, node) &&
                    nanosTimeout > spinForTimeoutThreshold)
                LockSupport.parkNanos(this, nanosTimeout);
            if (Thread.interrupted())
                throw new InterruptedException();
        }
    } finally {
        if (failed)
            cancelAcquire(node);
    }
}

// Main exported methods

/**
 * 尝试获取独占锁,可指定锁的获取数量
 */
protected boolean tryAcquire(int arg) {
    throw new UnsupportedOperationException();
}

/**
 * 尝试释放独占锁,在子类当中实现
 */
protected boolean tryRelease(int arg) {
    throw new UnsupportedOperationException();
}

/**
 * 共享式:共享式地获取同步状态。对于独占式同步组件来讲,同一时刻只有一个线程能获取到同步状态,
 * 其他线程都得去排队等待,其待重写的尝试获取同步状态的方法tryAcquire返回值为boolean,这很容易理解;
 * 对于共享式同步组件来讲,同一时刻可以有多个线程同时获取到同步状态,这也是“共享”的意义所在。
 * 本方法待被之类覆盖实现具体逻辑
 *  1.当返回值大于0时,表示获取同步状态成功,同时还有剩余同步状态可供其他线程获取;
 *
 * 2.当返回值等于0时,表示获取同步状态成功,但没有可用同步状态了;

 * 3.当返回值小于0时,表示获取同步状态失败。
 */
protected int tryAcquireShared(int arg) {
    throw new UnsupportedOperationException();
}

/**
 * 释放共享锁,具体实现在子类当中实现
 */
protected boolean tryReleaseShared(int arg) {
    throw new UnsupportedOperationException();
}

/**
 * 当前线程是否持有独占锁
 */
protected boolean isHeldExclusively() {
    throw new UnsupportedOperationException();
}

/**
 * 获取独占锁
 */
public final void acquire(int arg) {
    //尝试获取锁
    if (!tryAcquire(arg) &&
            acquireQueued(addWaiter(Node.EXCLUSIVE), arg))//独占模式
        selfInterrupt();
}

/**
 * 
 */
public final void acquireInterruptibly(int arg)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    if (!tryAcquire(arg))
        doAcquireInterruptibly(arg);
}

/**
 * 获取独占锁,设置最大等待时间
 */
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
        throws InterruptedException {
    if (Thread.interrupted())
        throw new InterruptedException();
    return tryAcquire(arg) ||
            doAcquireNanos(arg, nanosTimeout);
}

/**
 * 释放独占模式持有的锁
 */
public final boolean release(int arg) {
    if (tryRelease(arg)) {//释放一次锁
        Node h = head;
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);//唤醒后继结点
        return true;
    }
    return false;
}

/**
 * 请求获取共享锁
 */
public final void acquireShared(int arg) {
    if (tryAcquireShared(arg) < 0)//返回值小于0,获取同步状态失败,排队去;获取同步状态成功,直接返回去干自己的事儿。
        doAcquireShared(arg);
}
/**
 * Releases in shared mode.  Implemented by unblocking one or more
 * threads if {@link #tryReleaseShared} returns true.
 *
 * @param arg the release argument.  This value is conveyed to
 *        {@link #tryReleaseShared} but is otherwise uninterpreted
 *        and can represent anything you like.
 * @return the value returned from {@link #tryReleaseShared}
 */
public final boolean releaseShared(int arg) {
    if (tryReleaseShared(arg)) {
        doReleaseShared();
        return true;
    }
    return false;
}

// Queue inspection methods

public final boolean hasQueuedThreads() {
    return head != tail;
}

public final boolean hasContended() {
    return head != null;
}

public final Thread getFirstQueuedThread() {
    // handle only fast path, else relay
    return (head == tail) ? null : fullGetFirstQueuedThread();
}

/**
 * Version of getFirstQueuedThread called when fastpath fails
 */
private Thread fullGetFirstQueuedThread() {
    Node h, s;
    Thread st;
    if (((h = head) != null && (s = h.next) != null &&
            s.prev == head && (st = s.thread) != null) ||
            ((h = head) != null && (s = h.next) != null &&
                    s.prev == head && (st = s.thread) != null))
        return st;

    Node t = tail;
    Thread firstThread = null;
    while (t != null && t != head) {
        Thread tt = t.thread;
        if (tt != null)
            firstThread = tt;
        t = t.prev;
    }
    return firstThread;
}

/**
 * 判断当前线程是否在队列当中
 */
public final boolean isQueued(Thread thread) {
    if (thread == null)
        throw new NullPointerException();
    for (Node p = tail; p != null; p = p.prev)
        if (p.thread == thread)
            return true;
    return false;
}

final boolean apparentlyFirstQueuedIsExclusive() {
    Node h, s;
    return (h = head) != null &&
            (s = h.next)  != null &&
            !s.isShared()         &&
            s.thread != null;
}

/**
 * 判断当前节点是否有前驱节点
 */
public final boolean hasQueuedPredecessors() {
    Node t = tail; // Read fields in reverse initialization order
    Node h = head;
    Node s;
    return h != t &&
            ((s = h.next) == null || s.thread != Thread.currentThread());
}
// Instrumentation and monitoring methods

/**
 * 同步队列长度
 */
public final int getQueueLength() {
    int n = 0;
    for (Node p = tail; p != null; p = p.prev) {
        if (p.thread != null)
            ++n;
    }
    return n;
}

/**
 * 获取队列等待thread集合
 */
public final Collection<Thread> getQueuedThreads() {
    ArrayList<Thread> list = new ArrayList<Thread>();
    for (Node p = tail; p != null; p = p.prev) {
        Thread t = p.thread;
        if (t != null)
            list.add(t);
    }
    return list;
}

/**
 * 获取独占模式等待thread线程集合
 */
public final Collection<Thread> getExclusiveQueuedThreads() {
    ArrayList<Thread> list = new ArrayList<Thread>();
    for (Node p = tail; p != null; p = p.prev) {
        if (!p.isShared()) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
    }
    return list;
}

/**
 * 获取共享模式等待thread集合
 */
public final Collection<Thread> getSharedQueuedThreads() {
    ArrayList<Thread> list = new ArrayList<Thread>();
    for (Node p = tail; p != null; p = p.prev) {
        if (p.isShared()) {
            Thread t = p.thread;
            if (t != null)
                list.add(t);
        }
    }
    return list;
}
// Internal support methods for Conditions

/**
 * 判断节点是否在同步队列中
 */
final boolean isOnSyncQueue(Node node) {
    //快速判断1:节点状态或者节点没有前置节点
    //注:同步队列是有头节点的,而条件队列没有
    if (node.waitStatus == Node.CONDITION || node.prev == null)
        return false;
    //快速判断2:next字段只有同步队列才会使用,条件队列中使用的是nextWaiter字段
    if (node.next != null) // If has successor, it must be on queue
        return true;
    //上面如果无法判断则进入复杂判断
    return findNodeFromTail(node);
}

private boolean findNodeFromTail(Node node) {
    Node t = tail;
    for (;;) {
        if (t == node)
            return true;
        if (t == null)
            return false;
        t = t.prev;
    }
}

/**
 * 将节点从条件队列当中移动到同步队列当中,等待获取锁
 */
final boolean transferForSignal(Node node) {
    /*
     * 修改节点信号量状态为0,失败直接返回false
     */
    if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
        return false;

    /*
     * 加入同步队列尾部当中,返回前驱节点
     */
    Node p = enq(node);
    int ws = p.waitStatus;
    //前驱节点不可用 或者 修改信号量状态失败
    if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
        LockSupport.unpark(node.thread); //唤醒当前节点
    return true;
}

final boolean transferAfterCancelledWait(Node node) {
    if (compareAndSetWaitStatus(node, Node.CONDITION, 0)) {
        enq(node);
        return true;
    }
    /*
     * If we lost out to a signal(), then we can't proceed
     * until it finishes its enq().  Cancelling during an
     * incomplete transfer is both rare and transient, so just
     * spin.
     */
    while (!isOnSyncQueue(node))
        Thread.yield();
    return false;
}

/**
 * 入参就是新创建的节点,即当前节点
 */
final int fullyRelease(Node node) {
    boolean failed = true;
    try {
        //这里这个取值要注意,获取当前的state并释放,这从另一个角度说明必须是独占锁
        //可以考虑下这个逻辑放在共享锁下面会发生什么?
        int savedState = getState();
        if (release(savedState)) {
            failed = false;
            return savedState;
        } else {
            //如果这里释放失败,则抛出异常
            throw new IllegalMonitorStateException();
        }
    } finally {
        /**
         * 如果释放锁失败,则把节点取消,由这里就能看出来上面添加节点的逻辑中
         * 只需要判断最后一个节点是否被取消就可以了
         */
        if (failed)
            node.waitStatus = Node.CANCELLED;
    }
}

// Instrumentation methods for conditions

public final boolean hasWaiters(ConditionObject condition) {
    if (!owns(condition))
        throw new IllegalArgumentException("Not owner");
    return condition.hasWaiters();
}

/**
 * 获取条件队列长度
 */
public final int getWaitQueueLength(ConditionObject condition) {
    if (!owns(condition))
        throw new IllegalArgumentException("Not owner");
    return condition.getWaitQueueLength();
}

/**
 * 获取条件队列当中所有等待的thread集合
 */
public final Collection<Thread> getWaitingThreads(ConditionObject condition) {
    if (!owns(condition))
        throw new IllegalArgumentException("Not owner");
    return condition.getWaitingThreads();
}

/**
 * 条件对象,实现基于条件的具体行为
 */
public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    /** First node of condition queue. */
    private transient Node firstWaiter;
    /** Last node of condition queue. */
    private transient Node lastWaiter;

    /**
     * Creates a new {@code ConditionObject} instance.
     */
    public ConditionObject() { }

    // Internal methods

    /**
     * 1.与同步队列不同,条件队列头尾指针是firstWaiter跟lastWaiter
     * 2.条件队列是在获取锁之后,也就是临界区进行操作,因此很多地方不用考虑并发
     */
    private Node addConditionWaiter() {
        Node t = lastWaiter;
        //如果最后一个节点被取消,则删除队列中被取消的节点
        //至于为啥是最后一个节点后面会分析
        if (t != null && t.waitStatus != Node.CONDITION) {
            //删除所有被取消的节点
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        //创建一个类型为CONDITION的节点并加入队列,由于在临界区,所以这里不用并发控制
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }

    /**
     * 发信号,通知遍历条件队列当中的节点转移到同步队列当中,准备排队获取锁
     */
    private void doSignal(Node first) {
        do {
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) && //转移节点
                (first = firstWaiter) != null);
    }

    /**
     * 通知所有节点移动到同步队列当中,并将节点从条件队列删除
     */
    private void doSignalAll(Node first) {
        lastWaiter = firstWaiter = null;
        do {
            Node next = first.nextWaiter;
            first.nextWaiter = null;
            transferForSignal(first);
            first = next;
        } while (first != null);
    }

    /**
     * 删除条件队列当中被取消的节点
     */
    private void unlinkCancelledWaiters() {
        Node t = firstWaiter;
        Node trail = null;
        while (t != null) {
            Node next = t.nextWaiter;
            if (t.waitStatus != Node.CONDITION) {
                t.nextWaiter = null;
                if (trail == null)
                    firstWaiter = next;
                else
                    trail.nextWaiter = next;
                if (next == null)
                    lastWaiter = trail;
            }
            else
                trail = t;
            t = next;
        }
    }

    // public methods

    /**
     * 发新号,通知条件队列当中节点到同步队列当中去排队
     */
    public final void signal() {
        if (!isHeldExclusively())//节点不能已经持有独占锁
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            /**
             * 发信号通知条件队列的节点准备到同步队列当中去排队
             */
            doSignal(first);
    }

    /**
     * 唤醒所有条件队列的节点转移到同步队列当中
     */
        public final void signalAll() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        Node first = firstWaiter;
        if (first != null)
            doSignalAll(first);
    }

    /**
     * Implements uninterruptible condition wait.
     * <ol>
     * <li> Save lock state returned by {@link #getState}.
     * <li> Invoke {@link #release} with saved state as argument,
     *      throwing IllegalMonitorStateException if it fails.
     * <li> Block until signalled.
     * <li> Reacquire by invoking specialized version of
     *      {@link #acquire} with saved state as argument.
     * </ol>
     */
    public final void awaitUninterruptibly() {
        Node node = addConditionWaiter();
        int savedState = fullyRelease(node);
        boolean interrupted = false;
        while (!isOnSyncQueue(node)) {
            LockSupport.park(this);
            if (Thread.interrupted())
                interrupted = true;
        }
        if (acquireQueued(node, savedState) || interrupted)
            selfInterrupt();
    }

    /** 该模式表示在退出等待时重新中断 */
    private static final int REINTERRUPT =  1;
    /** 异常中断 */
    private static final int THROW_IE    = -1;

    /**
     * 这里的判断逻辑是:
     * 1.如果现在不是中断的,即正常被signal唤醒则返回0
     * 2.如果节点由中断加入同步队列则返回THROW_IE,由signal加入同步队列则返回REINTERRUPT
     */
    private int checkInterruptWhileWaiting(Node node) {
        return Thread.interrupted() ?
                (transferAfterCancelledWait(node) ? THROW_IE : REINTERRUPT) :
                0;
    }

    /**
     * 根据中断时机选择抛出异常或者设置线程中断状态
     */
    private void reportInterruptAfterWait(int interruptMode)
            throws InterruptedException {
        if (interruptMode == THROW_IE)
            throw new InterruptedException();
        else if (interruptMode == REINTERRUPT)
            selfInterrupt();
    }

    /**
     * 加入条件队列等待,条件队列入口
     */
    public final void await() throws InterruptedException {

        //T2进来
        //如果当前线程被中断则直接抛出异常
        if (Thread.interrupted())
            throw new InterruptedException();
        //把当前节点加入条件队列
        Node node = addConditionWaiter();
        //释放掉已经获取的独占锁资源
        int savedState = fullyRelease(node);//T2释放锁
        int interruptMode = 0;
        //如果不在同步队列中则不断挂起
        while (!isOnSyncQueue(node)) {
            LockSupport.park(this);//T1被阻塞
            //这里被唤醒可能是正常的signal操作也可能是中断
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        /**
         * 走到这里说明节点已经条件满足被加入到了同步队列中或者中断了
         * 这个方法很熟悉吧?就跟独占锁调用同样的获取锁方法,从这里可以看出条件队列只能用于独占锁
         * 在处理中断之前首先要做的是从同步队列中成功获取锁资源
         */
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        //走到这里说明已经成功获取到了独占锁,接下来就做些收尾工作
        //删除条件队列中被取消的节点
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        //根据不同模式处理中断
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }
    /**
     * Implements timed condition wait.
     * <ol>
     * <li> If current thread is interrupted, throw InterruptedException.
     * <li> Save lock state returned by {@link #getState}.
     * <li> Invoke {@link #release} with saved state as argument,
     *      throwing IllegalMonitorStateException if it fails.
     * <li> Block until signalled, interrupted, or timed out.
     * <li> Reacquire by invoking specialized version of
     *      {@link #acquire} with saved state as argument.
     * <li> If interrupted while blocked in step 4, throw InterruptedException.
     * <li> If timed out while blocked in step 4, return false, else true.
     * </ol>
     */
    public final boolean await(long time, TimeUnit unit)
            throws InterruptedException {
        long nanosTimeout = unit.toNanos(time);
        if (Thread.interrupted())
            throw new InterruptedException();
        Node node = addConditionWaiter();
        int savedState = fullyRelease(node);
        final long deadline = System.nanoTime() + nanosTimeout;
        boolean timedout = false;
        int interruptMode = 0;
        while (!isOnSyncQueue(node)) {
            if (nanosTimeout <= 0L) {
                timedout = transferAfterCancelledWait(node);
                break;
            }
            if (nanosTimeout >= spinForTimeoutThreshold)
                LockSupport.parkNanos(this, nanosTimeout);
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
            nanosTimeout = deadline - System.nanoTime();
        }
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        if (node.nextWaiter != null)
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
        return !timedout;
    }
    final boolean isOwnedBy(AbstractQueuedSynchronizer sync) {
        return sync == AbstractQueuedSynchronizer.this;
    }

    /**
     * Queries whether any threads are waiting on this condition.
     * Implements {@link AbstractQueuedSynchronizer#hasWaiters(ConditionObject)}.
     *
     * @return {@code true} if there are any waiting threads
     * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
     *         returns {@code false}
     */
    protected final boolean hasWaiters() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            if (w.waitStatus == Node.CONDITION)
                return true;
        }
        return false;
    }

    /**
     * Returns an estimate of the number of threads waiting on
     * this condition.
     * Implements {@link AbstractQueuedSynchronizer#getWaitQueueLength(ConditionObject)}.
     *
     * @return the estimated number of waiting threads
     * @throws IllegalMonitorStateException if {@link #isHeldExclusively}
     *         returns {@code false}
     */
    protected final int getWaitQueueLength() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        int n = 0;
        for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            if (w.waitStatus == Node.CONDITION)
                ++n;
        }
        return n;
    }

    /**
     * 得到同步队列当中所有在等待的Thread集合
     */
    protected final Collection<Thread> getWaitingThreads() {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        ArrayList<Thread> list = new ArrayList<Thread>();
        for (Node w = firstWaiter; w != null; w = w.nextWaiter) {
            if (w.waitStatus == Node.CONDITION) {
                Thread t = w.thread;
                if (t != null)
                    list.add(t);
            }
        }
        return list;
    }
}

/**
 * Setup to support compareAndSet. We need to natively implement
 * this here: For the sake of permitting future enhancements, we
 * cannot explicitly subclass AtomicInteger, which would be
 * efficient and useful otherwise. So, as the lesser of evils, we
 * natively implement using hotspot intrinsics API. And while we
 * are at it, we do the same for other CASable fields (which could
 * otherwise be done with atomic field updaters).
 * unsafe魔法类,直接绕过虚拟机内存管理机制,修改内存
 */
private static final Unsafe unsafe = Unsafe.getUnsafe();
//偏移量
private static final long stateOffset;
private static final long headOffset;
private static final long tailOffset;
private static final long waitStatusOffset;
private static final long nextOffset;

static {
    try {
        //状态偏移量
        stateOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("state"));
        //head指针偏移量,head指向CLH队列的头部
        headOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("head"));
        tailOffset = unsafe.objectFieldOffset
                (AbstractQueuedSynchronizer.class.getDeclaredField("tail"));
        waitStatusOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("waitStatus"));
        nextOffset = unsafe.objectFieldOffset
                (Node.class.getDeclaredField("next"));

    } catch (Exception ex) { throw new Error(ex); }
}

/**
 * CAS 修改头部节点指向. 并发入队时使用.
 */
private final boolean compareAndSetHead(Node update) {
    return unsafe.compareAndSwapObject(this, headOffset, null, update);
}

/**
 * CAS 修改尾部节点指向. 并发入队时使用.
 */
private final boolean compareAndSetTail(Node expect, Node update) {
    return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}

/**
 * CAS 修改信号量状态.
 */
private static final boolean compareAndSetWaitStatus(Node node,
                                                     int expect,
                                                     int update) {
    return unsafe.compareAndSwapInt(node, waitStatusOffset,
            expect, update);
}

/**
 * 修改节点的后继指针.
 */
private static final boolean compareAndSetNext(Node node,
                                               Node expect,
                                               Node update) {
    return unsafe.compareAndSwapObject(node, nextOffset, expect, update);
}

}

AQS框架具体实现-独占锁实现ReentrantLock

public class ReentrantLock implements Lock, java.io.Serializable {
    private static final long serialVersionUID = 7373984872572414699L;
    /**
     * 内部调用AQS的动作,都基于该成员属性实现
     */
    private final Sync sync;
/**
 * ReentrantLock锁同步操作的基础类,继承自AQS框架.
 * 该类有两个继承类,1、NonfairSync 非公平锁,2、FairSync公平锁
 */
    abstract static class Sync extends AbstractQueuedSynchronizer {
    private static final long serialVersionUID = -5179523762034025860L;

    /**
     * 加锁的具体行为由子类实现
     */
    abstract void lock();

    /**
     * 尝试获取非公平锁
     */
    final boolean nonfairTryAcquire(int acquires) {
        //acquires = 1
        final Thread current = Thread.currentThread();
        int c = getState();
        /**
         * 不需要判断同步队列(CLH)中是否有排队等待线程
         * 判断state状态是否为0,不为0可以加锁
         */
        if (c == 0) {
            //unsafe操作,cas修改state状态
            if (compareAndSetState(0, acquires)) {
                //独占状态锁持有者指向当前线程
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        /**
         * state状态不为0,判断锁持有者是否是当前线程,
         * 如果是当前线程持有 则state+1
         */
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        //加锁失败
        return false;
    }

    /**
     * 释放锁
     */
    protected final boolean tryRelease(int releases) {
        int c = getState() - releases;
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        setState(c);
        return free;
    }

    /**
     * 判断持有独占锁的线程是否是当前线程
     */
    protected final boolean isHeldExclusively() {
        return getExclusiveOwnerThread() == Thread.currentThread();
    }

    //返回条件对象
    final ConditionObject newCondition() {
        return new ConditionObject();
    }
    final Thread getOwner() {
        return getState() == 0 ? null : getExclusiveOwnerThread();
    }

    final int getHoldCount() {
        return isHeldExclusively() ? getState() : 0;
    }

    final boolean isLocked() {
        return getState() != 0;
    }

    /**
     * Reconstitutes the instance from a stream (that is, deserializes it).
     */
    private void readObject(java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        setState(0); // reset to unlocked state
    }
}

/**
 * 非公平锁
 */
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;
    /**
     * 加锁行为
     */
    final void lock() {
        /**
         * 第一步:直接尝试加锁
         * 与公平锁实现的加锁行为一个最大的区别在于,此处不会去判断同步队列(CLH队列)中
         * 是否有排队等待加锁的节点,上来直接加锁(判断state是否为0,CAS修改state为1)
         * ,并将独占锁持有者 exclusiveOwnerThread 属性指向当前线程
         * 如果当前有人占用锁,再尝试去加一次锁
         */
        if (compareAndSetState(0, 1))
            setExclusiveOwnerThread(Thread.currentThread());
        else
            //AQS定义的方法,加锁
            acquire(1);
    }

    /**
     * 父类AbstractQueuedSynchronizer.acquire()中调用本方法
     */
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
}

/**
 * 公平锁
 */
static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    final void lock() {
        acquire(1);
    }
    /**
     * 重写aqs中的方法逻辑
     * 尝试加锁,被AQS的acquire()方法调用
     */
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        if (c == 0) {
            /**
             * 与非公平锁中的区别,需要先判断队列当中是否有等待的节点
             * 如果没有则可以尝试CAS获取锁
             */
            if (!hasQueuedPredecessors() &&
                    compareAndSetState(0, acquires)) {
                //独占线程指向当前线程
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

/**
 * 默认构造函数,创建非公平锁对象
 */
public ReentrantLock() {
    sync = new NonfairSync();
}

/**
 * 根据要求创建公平锁或非公平锁
 */
public ReentrantLock(boolean fair) {
    sync = fair ? new FairSync() : new NonfairSync();
}

/**
 * 加锁
 */
public void lock() {
    sync.lock();
}

/**
 * 尝试获去取锁,获取失败被阻塞,线程被中断直接抛出异常
 */
public void lockInterruptibly() throws InterruptedException {
    sync.acquireInterruptibly(1);
}

/**
 * 尝试加锁
 */
public boolean tryLock() {
    return sync.nonfairTryAcquire(1);
}

/**
 * 指定等待时间内尝试加锁
 */
public boolean tryLock(long timeout, TimeUnit unit)
        throws InterruptedException {
    return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}

/**
 * 尝试去释放锁
 */
public void unlock() {
    sync.release(1);
}

/**
 * 返回条件对象
 */
public Condition newCondition() {
    return sync.newCondition();
}

/**
 * 返回当前线程持有的state状态数量
 */
public int getHoldCount() {
    return sync.getHoldCount();
}

/**
 * 查询当前线程是否持有锁
 */
public boolean isHeldByCurrentThread() {
    return sync.isHeldExclusively();
}

/**
 * 状态表示是否被Thread加锁持有
 */
public boolean isLocked() {
    return sync.isLocked();
}

/**
 * 是否公平锁?是返回true 否则返回 false
 */
public final boolean isFair() {
    return sync instanceof FairSync;
}

/**
 * 获取持有锁的当前线程
 */
protected Thread getOwner() {
    return sync.getOwner();
}

/**
 * 判断队列当中是否有在等待获取锁的Thread节点
 */
public final boolean hasQueuedThreads() {
    return sync.hasQueuedThreads();
}

/**
 * 当前线程是否在同步队列中等待
 */
public final boolean hasQueuedThread(Thread thread) {
    return sync.isQueued(thread);
}

/**
 * 获取同步队列长度
 */
public final int getQueueLength() {
    return sync.getQueueLength();
}

/**
 * 返回Thread集合,排队中的所有节点Thread会被返回
 */
protected Collection<Thread> getQueuedThreads() {
    return sync.getQueuedThreads();
}

/**
 * 条件队列当中是否有正在等待的节点
 */
public boolean hasWaiters(Condition condition) {
    if (condition == null)
        throw new NullPointerException();
    if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
        throw new IllegalArgumentException("not owner");
    return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
}

文档信息

Search

    Table of Contents